Abstract Riemann integrability and measurability
We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
Tvůrce
- de Amo, E.
- del Campo, R.
- M. Díaz
- Mariano Díaz
Předmět
- finitely additive integration
- localized convergence
- integral representation
- weak continuity conditions
- horizontal integration
Typ položka
- model:article
Tvůrce
- de Amo, E.
- del Campo, R.
- M. Díaz
- Mariano Díaz
Předmět
- finitely additive integration
- localized convergence
- integral representation
- weak continuity conditions
- horizontal integration
Typ položka
- model:article
Poskytovatelská instituce
Agregátor
Výrok o právech tohoto položka (není-li uvedeno jinak)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Práva
- policy:public
Místo–čas
- 1123-1139
Zdroj
- Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:4
Identifikátor
- https://cdk.lib.cas.cz/client/handle/uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
- uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
- uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
Formát
- bez média
- svazek
Jazyk
- eng
- eng
Země původu
- Czech Republic
Název kolekce
Poprvé zveřejněno na Europeana
- 2021-05-21T06:43:45.539Z
Poslední aktualizace od poskytující instituce
- 2021-12-25T05:07:51.358Z