Generalized deductive systems in subregular varieties
An algebra A = (A,F) is subregular alias regular with respect to a unary term function g if for each Θ, Φ ∈ Con A we have Θ = Φ whenever [g(a)]Θ = [g(a)]Φ for each a ∈ A. We borrow the concept of a deductive system from logic to modify it for subregular algebras. Using it we show that a subset C ⊆ A is a class of some congruence on Θ containing g(a) if and only if C is this generalized deductive s…
Urheber
- Chajda, Ivan
Betreff
- regular variety
- subregular variety
- deductive system
- congruence class
- difference system
Art des Objekts
- model:article
Urheber
- Chajda, Ivan
Betreff
- regular variety
- subregular variety
- deductive system
- congruence class
- difference system
Art des Objekts
- model:article
Datenpartner
Aggregator
Rechtehinweise der Medien in diesem Datensatz (sofern nicht anders angegeben)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Rechte
- policy:public
Ort-Zeit
- 319-324
Quelle
- Mathematica bohemica | 2003 Volume:128 | Number:3
Kennung
- https://cdk.lib.cas.cz/client/handle/uuid:5b7b63d7-f9f6-4d87-8293-1c07dbed1205
- uuid:5b7b63d7-f9f6-4d87-8293-1c07dbed1205
- doi:10.21136/MB.2003.134184
- uuid:5b7b63d7-f9f6-4d87-8293-1c07dbed1205
Format
- bez média
- svazek
Sprache
- eng
- eng
Bereitstellendes Land
- Czech Republic
Name der Sammlung
Erstmals auf Europeana veröffentlicht
- 2021-05-21T06:43:45.539Z
Zuletzt aktualisiert vom Datenpartner
- 2021-12-25T05:07:51.358Z