Join-semilattices whose sections are residuated po-monoids
We generalize the concept of an integral residuated lattice to join-semilattices with an upper bound where every principal order-filter (section) is a residuated semilattice; such a structure is called a {\it sectionally residuated semilattice}. Natural examples come from propositional logic. For instance, implication algebras (also known as Tarski algebras), which are the algebraic models of the …
Dan l-oġġett huwa pprovdut u miżmum minn Library of the Czech Academy of Sciences
Ara fuq il-websajt tal-istituzzjoni fornitriċi
(tiftaħ fit-tieqa l-ġdida)
Kreatur
- Chajda, Ivan
- Kühr, Jan
Suġġett
- residuated lattice
- residuated semilattice
- biresiduation algebra
- pseudo-MV-algebra
- sectionally residuated semilattice
- sectionally residuated lattice
Tip ta' oġġett
- model:article
Kreatur
- Chajda, Ivan
- Kühr, Jan
Suġġett
- residuated lattice
- residuated semilattice
- biresiduation algebra
- pseudo-MV-algebra
- sectionally residuated semilattice
- sectionally residuated lattice
Tip ta' oġġett
- model:article
Istituzzjoni fornitriċi
Aggregatur
Dikjarazzjoni tad-drittijiet tal-midja f'dan ir-rekord (sakemm mhux speċifikat mod ieħor)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Drittijiet
- policy:public
Post-Ħin
- 1107-1127
Sors
- Czechoslovak Mathematical Journal | 2008 Volume:58 | Number:4
Identifikatur
- https://cdk.lib.cas.cz/client/handle/uuid:75632244-ec77-499f-a1f5-32960555998b
- uuid:75632244-ec77-499f-a1f5-32960555998b
- uuid:75632244-ec77-499f-a1f5-32960555998b
Format
- bez média
- svazek
Lingwa
- eng
- eng
Pajjiż fornitur
- Czech Republic
Isem il-kollezzjoni
L-ewwel darba ppubblikata fuq Europeana
- 2021-05-21T06:43:45.539Z
L-aħħar aġġornament mill-istituzzjoni fornitriċi
- 2021-12-25T05:07:51.358Z
Skopri kollezzjonijiet relatati
Skopri oġġetti relatati
Rachůnek, Jiří; Šalounová, Dana
Library of the Czech Academy of Sciences
Kühr, Jan
Library of the Czech Academy of Sciences
Rachůnek, Jiří; Svoboda, Zdeněk
Library of the Czech Academy of Sciences