Abstract Riemann integrability and measurability
We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
Makers
- de Amo, E.
- del Campo, R.
- M. Díaz
- Mariano Díaz
Onderwerp
- finitely additive integration
- localized convergence
- integral representation
- weak continuity conditions
- horizontal integration
Type object
- model:article
Makers
- de Amo, E.
- del Campo, R.
- M. Díaz
- Mariano Díaz
Onderwerp
- finitely additive integration
- localized convergence
- integral representation
- weak continuity conditions
- horizontal integration
Type object
- model:article
Deelnemende erfgoedorganisatie
Informatienetwerk
Rechtenstatus van de media in dit record (tenzij anders vermeld)
- http://creativecommons.org/licenses/by-nc-sa/4.0/
Rechten
- policy:public
Plaats-Tijd
- 1123-1139
Bron
- Czechoslovak Mathematical Journal | 2009 Volume:59 | Number:4
Identificatie
- https://cdk.lib.cas.cz/client/handle/uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
- uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
- uuid:2a226ddb-2775-4317-8b05-2e8673baee6f
Vorm
- bez média
- svazek
Taal
- eng
- eng
Land
- Czech Republic
Naam van de collectie
Voor het eerst gepubliceerd op Europeana
- 2021-05-21T06:43:45.539Z
Laatste keer bijgewerkt door deelnemende erfgoedorganisatie
- 2021-12-25T05:07:51.358Z